YOGA BASED ISOMETRIC RELAXATION VERSUS SUPINE REST: A STUDY OF OXYGEN CONSUMPTION, BREATH RATE AND VOLUME AND AUTONOMIC MEASURES

R.P. Vempati and Shirley Telles
Vivekananda Kendra Yoga Research Foundation

Forty male volunteers with ages ranging from 16 to 46 yrs were studied in two sessions, yoga based isometric relaxation technique (IRT) and supine rest (SR). Assessments of autonomic parameters were made in 15 subjects, before and after the practices, whereas oxygen consumption, breath rate and breath volume were recorded in 25 subjects, before and after IRT and SR. A significant decrease in breath rate after IRT and in finger plethysmogram was recorded after SR. The results suggest possibilities for IRT in reducing some physiological signs of anxiety.

Various conventional as well as non-pharmacological methods of relaxation, including autogenic muscle relaxation are becoming popular for reduction of stress (DeBerry, Davis & Reinhard, 1989). Traditional yoga texts say that it may also sometimes be desirable to activate the mind (Chinmayananda, 1984): “In a state of oblivion awaken the mind again; when agitated, pacify it; in between understand that the mind is full of potency. If the mind has reached the state of perfect equilibrium then do not disturb it again” (p. 275). For most person routinely, the mental state is neither in a “state of oblivion” nor is it “agitated”, but is somewhere between these extremes, and hence a combination of “awakening” and “pacifying” measures may be better suited, to reach a state of equilibrium. Once the mind is out of vikshipta (a state of unsteadiness), then the equanimity will set in. To shatter the ‘laya’ (a state of oblivion) and pacify the vikshipta, a combination of stimulation and relaxation may be a better measure.

Isometric squeeze relaxation (a variant of progressive relaxation) may be more appropriate for individuals who have difficulty focusing, while meditation may be better suited to those who already possess well-developed relaxation skills at the trait level (Weinstein & Smith, 1992). It is important that the appropriate relaxation technique is used, as people with mental illness may experience an exacerbation of their symptoms with the injudicious use of relaxation techniques that use imagery (Harding, 1996). There are some relaxation methods, which can be carried out as a simple technique ‘on the spot’ like the intervention in the present study (Payne, 1995).

The objective of the present investigation was to evaluate the efficacy of yoga based isometric relaxation technique (a variant of conventional technique), with external instructions to reduce psychophysiological
ISOMETRIC RELAXATION AND SUPINE REST

cal arousal. This is basically a combination of isometric contractions of all muscle groups followed by relaxation with breath awareness (Isometric relaxation technique, IRT). For comparison, assessments were also made following supine rest (SR).

METHOD

Subjects

The subjects were 40 male volunteers, with ages ranging from 16-46 years and with an average of 23.9 months of experience of yoga practice. The autonomic parameters were assessed in 15 subjects (group's average age was 30.2, SD = 6.1 yr). In 25 subjects the oxygen consumption, breath rate and volume were measured before and after the two practices (group's average age was 28.2, SD = 6.6 yr).

Design

Subjects were studied in two separate relaxation sessions, viz., isometric relaxation technique (IRT), and supine rest (SR) without instructions as a control. The two sessions were on different days, at the same time of the day. For half the subjects, alternately, the IRT session was on the first day with the SR session the next time. The order was reversed for the remaining subjects. Each recording session was of 10 minutes, and consisted of 2 periods, viz., before (5 minutes) and after (5 minutes). The subjects were sitting at ease before and after the practice periods, and supine during the relaxation periods. Both techniques were of 10 minutes duration under the same standard conditions.

Assessment

The oxygen consumption was recorded with a closed circuit Benedict-Roth apparatus (INCO, Ambala, India) using the standard method (Mountcastle, 1980). The subject breathed into an oxygen tank from which inspired carbon dioxide was excluded by absorption in sodium hydroxide. The subjects were asked to breathe into the mask, which covered their nose and mouth. Recordings were made before and after, but not during test periods.

A 4-channel polygraph (Medicaid Systems, Chandigarh, India) was used to record the electrocardiogram (EKG), respiration, and finger plethysmogram amplitude EKG was recorded using standard limb lead I configuration. The EKG was digitized using a 12 bit analog-to-digital converter (ADC) at a sampling rate of 500 Hz. The data recorded were visually inspected off-line and only noise free data were included for analysis (Raghuraj, Ramakrishnan, Nagendra & Telles, 1988). The R waves were detected to obtain a point event series of successive R-R intervals, from which the beat to beat heart rate series was computed.

Respiration was recorded from using a nasal thermistor attached to the more patent nostril. Finger plethysmogram amplitude was recorded
placing the photoplethysmograph on the volar surface of the distal phalanges of the index finger of the right hand.

Isometric relaxation technique (IRT)

The isometric relaxation technique lasts for 10 minutes and is done in 5 phases of step-wise relaxation, detailed below (Nagendra & Nagarathna, 1988). (i) Isometric contractions of all the muscle groups from the toes to the facial muscles, mentioning each part of the body specifically, (ii) letting the body 'collapse' on the ground with a feeling of 'letting go', till the changes revert back to normal, (iii) Watching the abdominal movements, (iv) synchronizing the abdominal movements with breath, (v) developing the breath awareness followed by invoking the positive emotions with the breath. This is practiced slowly and with instructions about relaxation and awareness of breath and mental sensations. Throughout the practice the eyes are closed.

Supine rest (SR)

During SR, the subject lies supine with the legs apart, arms away from the sides of the body, and eyes closed. This session lasts 10 minutes, as for IRT.

Data extraction

The end expiratory points of the respirogram obtained using the Benedict-Roth apparatus were joined as a slanting line, the slope of which gave the difference between initial and final volumes of oxygen in the tank in a given period, which was approximately 3-4 minutes in most cases. The breath rate and respiratory (tidal breathing) volume were also obtained from the record.

The following data were extracted from the polygraph records: The respiratory rate (in cycles per minute) was calculated by counting the breath cycles in 60 second epochs, continuously. Finger plethysmogram amplitude (in mm) was sampled at 20-second intervals. Values averaged across each of the periods (before, after) of a session, were used for analysis.

Frequency domain analysis of heart rate variability (HRV) data was carried out for the 5-minute recordings before and after the sessions. The mean heart rate was obtained from this record. The mean values were removed from the heart rate series to obtain the HRV values. The HRV power spectrum was obtained using Fast Fourier Transform (FFT). The power in HRV series in the following specific frequency bands was studied, viz., the very low frequency (VLF) band (0 - 0.05 Hz), low frequency (LF) band (0.05 - 0.15 Hz), and high frequency (HF) band (0.15 - 0.50 Hz). The low frequency and high frequency values were expressed as normalized units, which represent the relative value of each power component in proportion to the total power minus VLF component (LF
ity. The rate of respiration is highly sensitive to phasic changes in the psychological state (Lorig & Schwartz, 1990). The increase in breath rate has been correlated with experimentally evoked fear and anxiety (Ax, 1953), as well as before situations such as parachute jumping (Fenz & Jones, 1972). The reduction in breath rate after yoga based IRT is consistent with other reports of reduced breath rate related to the practice of yoga, both as an immediate effect (Wallace, Benson & Wilson, 1971) and after three months (Joseph et al., 1981). This suggests that IRT may help to reduce some aspects of physiological arousal, without modifying autonomic activity.

Similarly, the non-significant trend of decrease in oxygen consumption and increase in breath amplitude after IRT, also suggest a reduction of arousal. A decrease in finger plethysmogram amplitude is suggestive of increased peripheral vasoconstriction related to increased sympathetic vasoconstrictor tone (Delius & Kellerova, 1971), which occurred after SR. This change may be due to the postural readjustment as the 'post' recording was made while seated erect, compared to the supine position, during the test period.

In conclusion, yoga based IRT produced better physiological rest than SR, supporting the idea that a combination of stimulation (through isometric contractions) and relaxation may reduce arousal better than relaxation alone.

REFERENCES


Delius, W., & Kellerova, E. (1971). Reaction of arterial and venous vessels in the human forearm and hand to deep breath or mental strain, Clinical Science, 40, 271-282.


Vivekananda Kendra Yoga Research Foundation, # 9, Appejappa Agrahara, Chamrajpet, Bangalore 560 018.