Chapter 3

Review of Scientific Literature

3.0 REVIEW OF SCIENTIFIC LITERATURE

3.1 SCIENTIFIC RESEARCH ON YOGA POSTURE AND POSE ESTIMATION

Yoga Biomechanics: Biomechanics provides a unique evidence-based exploration into the complexities of human movement and what a safe, effective yoga practice entails. The emphasis is taken off flexibility and centered on a narrative of body tissue adaptation. Conventional approaches to modern yoga are examined through a biomechanics lens, highlighting emerging perspectives in both the rehabilitation and sport science literature. Artfully woven throughout the book is a sub-text that improves the reader's research literacy while making an impassioned plea for the role of research in the evolution of how teachers teach, and how practitioners practice. Yoga teachers and yoga practitioners alike will discern yoga *āsana* for its role in one's musculoskeletal health. Yoga therapists and other allied healthcare providers can apply the principles discussed to their respective professions. All readers will understand pose modifications in the context of load management, reducing fears of injury and discovering the robustness and resilience of the human body (Goyal & Jain, 2021).

Artificial neural network (ANN) for human pose estimation

The current study presents an approach to localizing human body joints in 3D coordinates based on a single low-resolution depth image. First, a framework to generate realistic depth images from a 3D body model is described. The data pre-processing and normalization procedure, and deep neural network (DNN) and MLP artificial neural networks architectures and training are presented. The robustness against camera distance and image noise is analyzed. Localization accuracy for each joint is reported and application for low resolution and large distance pose estimation is proposed (Szczuko, 2017).

TensorFlow

For understanding neural network model, differentiable programming software named TensorFlow will be used in this study. TensorFlow is an end-to-end open source platform which has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art and develop powered applications(Abadi, 2016).

Deep Pose: Human Pose Estimation via Deep Neural Networks (DNN)

Deep poses are formulated as DNN-based regression problem towards body joints. It presents result of high precision pose estimates. The approach has the advantage of reasoning about pose in a holistic fashion and has a simple but yet powerful formulation which capitalizes on recent advances(Alexander Toshev, 2014).

Three-dimensional motion capture of *Suryanamaskar* was performed on 10 healthy trained yoga practitioners with 12-camera Vicon System (Oxford Metrics Group, UK) at a sampling frequency of 100 Hz using 39 retro-reflective markers. Data were processed using plug-in-gait model. Analog data were filtered at 10Hz. Joint angles of the spine, upper, and lower extremities during 12-subsequent poses were computed within Vicon Nexus. Joint motion was largely symmetrical in all poses except pose 4 and 9. The spine moved through a range of 58° flexion to 44° extension. In the lower quadrant, hip moved from 134° flexion to 15° extension, knee flexed to a maximum of 140°, and 3° hyperextension. Ankle moved in a closed kinematic chain through 40° dorsiflexion to 10° plantarflexion. In the upper quadrant, maximum neck extension was76°, shoulder moved through the overhead extension of 183°–56° flexion, elbow through 22°–116° flexion, and wrist from 85° to 3° wrist extension. Alternating wide range of transition between flexion and extension during *Suryanamaskar* holds potential to increase the mobility of

almost all body joints, with stretch on anterior and posterior soft tissues and challenge postural balance mechanisms through a varying base of support (Mullerpatan et al., 2019). Hatha Yoga's effects on the posture of 15 ten-year-old children and also its effects on the psychophysical condition of 15 grown-ups was studied. As symptoms, during the first examination, 12 of the 15 children had head protrusion, 14 had shortened back extensors, all 15 had bent shoulders, relaxation of the frontal abdominal wall and shortened flexors of both the calf and thigh. The condition of all the children was remarkably better after six months of practice, some of the symptoms having completely disappeared (head protrusion, asymmetry of the shoulders, mamillas and hips, shortening of the pectoralis and back extensors), 9 children still had slight to medium relaxation of the frontal abdominal wall, 8 children still had bent shoulders, and 1 child still had shortened calf and thigh extensors. The adults were in a weak or very weak psychophysical condition, they tired easily, they complained of sleep disturbances, fluctuation of emotional state and irritability. After 3 months of practice, the vital capacity of 8 of the adults tested (53.3%) had increased by 435 ml. The time duration of apnea had lengthened for all of the practicing adults, but with a truly large variation among them (a median of 14%). The deep waist-bend length of all the practicing adults had lengthened by an average of 9.5 cm, and the average length increase for the 3-minute running test was 42 m. All those who practiced, had experienced an alleviation of psychic difficulties (Savić, Pfau, Skorić, Pfau, & Spasojević, 1990).

Sl	Title	Author, Year	Sampl	Variable	Assessment Tools	Outcome	Conclusion
No.		& Journal	e Size				
1	Yoga posture	Wu, Z., Zhang, J., Chen,	n=11	multidimensio	fuzzy C-means (FCM)	BP-ANN and FCM; Bayesian	The authors proposed a full-
	recognition and	K., & Fu, C. (2019).		nal Gaussian	(BP-ANN)	network; inertial measurement	body posture modelling and
	quantitative	Sensors, 19 (23), 5129.		variable to	Bayesian network	unit; yoga posture recognition	quantitative evaluation method
	evaluation with			build a		and evaluation	to recognize and evaluate yoga
	wearable sensors			Bayesian			postures and provide guidance
	based on two-			network			to learner. BP-ANN and FCM
	stage classifier						were employed to construct a
	and prior						two-stage classifier to model
	Bayesian						and recognize full-body
	network.						postures
2	Deep pose:	Toshev, A., & Szegedy,	n=20	7-layered	Deep Neural	Human pose estimation,	This paper suggests
	Human pose	C. (2014). In Proceedings		generic	Networks (DNNs).	the formulation of the problem as	application of Deep Neural
	estimation via	of the IEEE conference		convolutional		DNN-based regression to	Networks (DNNs) to human
	deep neural	on computer vision and		DNN		joint coordinates and the	pose estimation.
	networks.	pattern recognition (pp.				presented cascade of such	
		1653-1660).				repressor's	

3.2 SUMMARY TABLE OF SCIENTIFIC RESEARCH ON YOGA POSTURE AND POSE ESTIMATION

						has the advantage of capturing	
						context and reasoning	
						about pose in a holistic manner.	
3	The	Wang, M. Y., Yu, S. S.,	n=20	7 commonly-	Electromyography	There was a significant main	Musculoskeletal demand
	biomechanical	Hashish, R.,		practiced	(EMG)	effect for pose, at the ankle, knee	varied significantly across the
	demands of	Samarawickrame, S. D.,		standing yoga		and hip, in the frontal and sagittal	different poses. These findings
	standing yoga	Kazadi, L., Greendale, G.		poses in older		planes	may be used to
	poses in seniors:	A., & Salem, G. (2013).		adults.		(p = 0.00 - 0.03). The Crescent,	guide the design of evidence-
	The Yoga	BMC Complementary				Chair, Warrior II, and One-	based yoga interventions that
	empowers	and Alternative				legged Balance poses generated	address individual-specific
	seniors	Medicine, 13 (1), 1-11.				the greatest average	training and rehabilitation
	study (YESS)					support moments. Side Stretch	goals in seniors.
						generated the greatest average	
						hip extensor and knee flexor	
						JMOFs. Crescent	
						placed the highest demands on	
						the hip flexors and knee	
						extensors. All of the poses	
						produced ankle plantar-flexor	

proposed recognition
ure first uses
ound
ction on the depth image
act a
ette contour of a human.

				neural network			This paper has proposed an
				and			effective procedure to
				length ratio are			recognize
				combined to			the five human postures of
				recognize total			standing, sitting, stooping,
				five postures			kneeling and lying, even when
				even when the			the human subjects have
				subjects are			different statures or
				facing in			orientations.
				different			
				directions.			
5	Yoga Āsana	Jose, J., & Shailesh, S.	n=200	Estimate 2D	3D CNN architecture	To get better results we have used	The architectures
	Identification: A	(2021, March). In IOP		and 3 D pose		transfer learning with	like 3DCNN, Deep – Pose
	Deep Learning	Conference Series:		features along		VGG16 architecture and	Estimators, LSTM, GRUs are
	Approach	Materials Science and		with		pretrained ImageNet weights	well suited for video-based
		Engineering (Vol. 1110,		identifying all		along with a DNN classifier. The	analysis.
		No. 1, p. 012002). IOP		visible joints of		results	
		Publishing.		the individuals		were quite promising; it gave	
						82% prediction accuracy.	

6	Epipolar	Chai, X., Zhou, F., &	Not	geometric	realistic matching	Our results demonstrate the	suggesting a method for
	constraint of	Chen, X. (2017). Optical	applica	principles of	experiments and	feasibility of	considerable improvement of
	single-camera	Engineering, 56(8),	ble	the feature-	analysis using a mirror	the proposed model	efficacy of the process for
	mirror binocular	084103.		matching	binocular stereo		matching mirrored features
	stereo vision			process of a	vision system		
	systems			mirror			
				binocular			
				stereo vision			
				system			
7	TensorFlow:	Abadi, M. (2016,	Not	dataflow	TensorFlow	TensorFlow is not purely	TensorFlow supports
	Learning	September). In	applica	graphs		functional, many of its uses	a variety of applications, but it
	Functions at	Proceedings of the 21st	ble			are concerned with optimizing	particularly targets training
	Scale	ACM SIGPLAN				functions (during training), then	and
		International Conference				with applying those functions	inference with deep neural
		on Functional				(during inference). These	networks. It serves as a
		Programming (pp. 1-1).				functions are defined as	platform for
						compositions of simple	research and for deploying
						primitives (as is common in	machine learning systems
							across many

						functional programming), with	areas, such as speech
						internal data representations that	recognition, computer vision,
						are learned rather than manually	robotics,
						design	information retrieval, and
							natural language processing
8	AI-Based Yoga	Chiddarwar, G. G.,	Not	human pose	Deep Learning (CNN)	This paper surveys the various	We have concluded that
	Pose Estimation	Ranjane, A., Chindhe,	applica	estimation	to pose estimation	technologies that can be used for	PoseNet is, by the current
	for Android	M., Deodhar, R., &	ble			pose estimation and concludes	standards, the best technique
	Application	Gangamwar, P. (2020).				the best method based on the	for implementing mobile
		Int J Inn Scien Res Tech,				usability for an android	applications, specifically for
		5, 1070-1073.				application	yoga.
9	Kinematics of	Mullerpatan, R. P.,	n=10	kinematics of	12-camera Vicon	Joint motion was largely	Suryanamaskar holds potential
	Suryanamaskar	Agarwal, B. M., Shetty,		spine, upper,	System (Oxford	symmetrical in all poses except	to increase the mobility of
	Using	T., Nehete, G. R., &		and lower	Metrics Group, UK) at	pose 4 and 9. The spine moved	almost all body joints, with
	Three-Dimensio	Narasipura, O. S. (2019).		extremity	a sampling	through a range of 58° flexion	stretch on anterior and
	nal Motion	International Journal of		during	frequency of 100 Hz	to44° extension. In the lower	posterior soft tissues and
	Capture	Yoga, 12(2), 124.		Suryanamaska	using 39 retro-	quadrant, hip moved from 134°	challenge postural balance
				r	reflective markers.	flexion to 15° extension, knee	mechanisms through a varying
						flexed toa maximum of 140°, and	base of support.

					Data were processed	3° hyperextension. Ankle moved		
					using plug-in-gait	in a closed kinematic chain		
					model. Analog data	through 40° dorsiflexion to 10°		
					were filtered at 10Hz.	plantarflexion. In the upper		
					Joint angles of the	quadrant, maximum neck		
					spine, upper, and	extension was76°, shoulder		
					lower extremities	moved through the overhead		
					during 12-subsequent	extension of 183°-56° flexion,		
					poses were computed	elbow through 22°-116° flexion,		
					within Vicon Nexus	and wrist from 85° to 3° wrist		
						extension		
10	Ergonomic	Kim, W., Sung, J.,	n=10	Observationalp	OpenPose-based	OpenPose showed good	OpenPose co	uld be a
	postural	Saakes, D., Huang, C., &		ostural	system for computing	performance under all task	promising tec	chnology to
	assessment using	Xiong, S. (2021).		assessment	joint angles and	conditions, whereas	measure joint an	gles and
	a new open-	International Journal of			RULA/REBA scores	Kinect performed significantly	conduct s	emi-automatic
	source human	Industrial Ergonomics,			and validate against	worse than OpenPose especially	ergonomic	postural
	pose estimation	84, 103164.			the reference	at cases with body occlusions or	assessments i	n the real
	technology				motion capture	non-frontal	workspace	where the
	(OpenPose)				system, and compare	tracking	conditions are of	ften

					its performance to the		non-ideal.
					Kinect-based system.		
11	Three-	Clark, R. A., Mentiplay,	Not	physical	Microsoft Kinect	The clinical and non-laboratory	Recent developments could
	dimensional	B. F., Hough, E., &Pua,	applica	function	devices and associated	utility of these	strengthen their ability to
	cameras and	Y. H. (2019). Gait &	ble	assessment	artificial intelligence,	devices holds great promise for	provide important and
	skeleton pose	posture, 68, 193-200.		using depth	automated	physical function assessment	impactful health-related data
	tracking			cameras	skeleton tracking		
	for physical				algorithms		
	function				alternative hardware,		
	assessment: A				including other		
	review of uses,				structured light and		
	validity,				time of flight		
	current				methods, stereoscopic		
	developments				cameras and		
	and Kinect				augmented reality		
	alternatives				leveraging		
					smartphone and tablet		
					cameras to perform		
					measurements		

					inthree-dimensional		
					space are summarised.		
					Software options		
					related to depth		
					sensing cameras		
12	Self-Supervised	Kocabas, M., Karagoz,	N=2	self-supervised	EpipolarPose	Our self-supervised (SS) model	EpipolarPose achieved state-
	Learning of 3D	S., &Akbas, E. (2019). In		learning	estimates	performs quite well compared	of-the-art resultsin
	Human Pose	Proceedings of the		method for 3D	2D poses from multi-	to the recent fully 3D supervised	Human3.6M and MPI-INF-
	using Multi-	IEEE/CVF conference on		human pose	view images, and	methods. 3D depth information	3D-HP benchmarks among
	view Geometry	computer vision and		estimation	then, utilizes	learned by our SS training	weakly/self-supervised
		pattern recognition (pp.			epipolar geometry to	method provides helpful cues to	methods.
		1077-1086).			obtain a 3D pose and	improve the performance of 2D-	
					camera	3D lifting approaches. Our	
					geometry	method yields 4mm less	
						error than their approach.	
13	Multi-task Deep	Luvizon, D. C., Picard,	n=250	mean per joint	A) 2D pose	The proposed CNN architecture,	With a single training
	Learning for	D., & Tabia, H. (2020).	0	position error	estimation and action	along with	procedure, our
	Real-Time 3D	IEEE transactions on	(MPII)		recognition, on which		
		pattern analysis and			we use respectively		

	Human Pose	machine intelligence,			MPII and Penn Action	the pose regression method,	multi-task model can be cut at
	Estimation and	43(8), 2752-2764.			datasets, and B) 3D	allows multi-scale pose and	different levels for pose and
	Action				pose estimation and	action	action
	Recognition				action recognition,	supervision and re-injection,	predictions, resulting in a
					using MPII,	resulting in a highly efficient	highly scalable approach.
					Human3.6M, and	densely	
					NTU datasets	supervised approach.	
14	Single-Network	Hidalgo, G., Raaj, Y.,	Not	2D whole-	multi-task learning	This work	it yields higher accuracy,
	Whole-Body	Idrees, H., Xiang, D., Joo,	applica	body pose	combined with an	directly results in a reduction of	especially for occluded, blurry,
	Pose Estimation	H., Simon, T., & Sheikh,	ble	estimation	improved model	computational complexity	and low resolution
		Y. (2019). In Proceedings			architecture to train	for applications that require 2D	faces and hand
		of the IEEE/CVF			the first single	whole-body information	
		International Conference			network		
		on Computer Vision (pp.			approach for 2D		
		6982-6991).			whole-body		
					estimation		
15	ANN for human	Szczuko, P. (2017,	n=800	human pose	data pre-processing	A very fast regression on body	The observed small
	pose estimation	September). In 2017	00	estimation	and normalization	joints locations in 3D space is	differences in accuracy
	in low resolution	Signal Processing:				achieved, even in case of sensor	between

	depth images	Algorithms,			procedure, and DNN	noise, large distance and reaching	elaborated DNN dedicated to
		Architectures,			and	off the screen	image processing and simple
		Arrangements, and			MLP artificial neural		MLP will be explored. Longer
		Applications (SPA) (pp.			networks		network training exploiting
		354-359). IEEE.			architectures and		GPU acceleration is planned,
					training		as expected to improve DNN
							accuracy
16	ExNET: Deep	Haque, S., Rabby, A. K.	N=200	Exercise Pose	ExNET: Deep Neural	We have conducted various	This proposed model
	Neural Network	M., Laboni, M. A.,	0	Detection	Network	experiments with our model on	presenting a better
	for Exercise	Neehal, N., & Hossain, S.				the test dataset, and finally got the	performance of classification
	Pose Detection	A. (2018, December). In				best accuracy of 82.68%.	of human
		International Conference					poses exercise. As a result, we
		on Recent Trends in					are able to achieve state-of-art
		Image Processing and					resultson several challenging
		Pattern Recognition (pp.					exercise pose datasets.
		186-193). Springer,					
		Singapore.					

17	Pose Estimated	Anilkumar, A., KT, A.,	Not	yoga	pre-trained pose	The user is then notified of	Our system will make it easier
	Yoga	Sajan, S., & KA, S.	applica	monitoring	estimation model	his/her error in the posture	to do exercises without the
	Monitoring	(2021). Available at	ble	system	namely MediaPipe	through a display screen or a	need for a special trainer.
	System	SSRN 3882498.				wireless speaker. The inaccurate	Reduce injuries due to
						body pose of the user can be	improper technique. By
						pointed out in real-time so that	porting the system to an
						the user can rectify his/her	android app and as a webapp
						mistakes.	along with personalised
							account creation for progress
							tracking, can help in reaching
							a wider audience