3.0 REVIEW OF SCIENTIFIC LITERATURE

The multi-dimensional effects of music have been documented through the ages. However, objective measures that could measure or track these amazing changes that music brings about are needed and current research is actively exploring and contributing to fill this lacunae. The effects of music on the human brain has been studied vastly, employing various functional neuroimaging modalities (Blood & Zatorre, 2001; Brattico et al., 2011; Brattico & Jacobsen, 2009; Koelsch, 2014; Koelsch et al., 2006; Menon & Levitin, 2005; Salimpoor et al., 2011). Music listening, performance and composition engages nearly every area of the brain that we have so far identified, and involves nearly every neural subsystem (Levitin, 2006). This implicates the potential of music as therapy and in rehabilitation of various ailments and traumatic conditions (Bunt & Hoskyns, 2013; Gilbertson & Aldridge, 2008; Sihvonen et al., 2017; Thaut & Hoemberg, 2014). In rehabilitating individuals suffering from various disorders of consciousness, terminally ill conditions, Post-Traumatic Stress Disorder (PTSD), stroke rehabilitation, dementing disorders, etc., individualized music therapy is key, as music listening and internalization is a subjective phenomenon and this is one of the key approaches followed in music therapy (Bunt & Hoskyns, 2013; Wheeler, 2015; Wheeler et al., 2005; Wigram et al., 2002). Clients' personalized musical assessments are made using standard assessments such as the Individualized Music Therapy Assessment Profile (IMTAP) (Baxter et al., 2007), following which music tailor-made to the individual's music preferences are administered. However, to our knowledge, there does not exist a measure that can quantify an individual's extent or depth of internalization to a given piece of music and also appraise the nature and intensity of his subjective experience, while he listened to it. This motivated us to develop the construct, Music Receptivity. Related studies focuses mostly on the trait aspect of music listening (T. C. Chin et al., 2018; T. Chin & Rickard, 2012; Law & Zentner, 2012; Müllensiefen et al., 2014; Nagy & Szabó, 2004; Sandstrom & Russo, 2013).

3.1 Studies related to music receptivity

Emotional responses to music in everyday settings are usually appraised by observing bodily cues, Foot tapping (shows involvement), humming or singing along shows emotional involvement, etc. With an objective of empirically measuring the extent of emotional involvement and to map the neural correlates of music listening, various functional neuroimaging modalities such as EEG (Ghosh et al., 2018; Kroupi et al., 2011; Maidhof et al., 2010; Tervaniemi et al., 1997; Thammasan et al., 2016), fMRI (Abrams et al., 2013; Alluri et al., 2015; Brattico et al., 2011; Burunat et al., 2016; Cong et al., 2014; Koelsch et al., 2006; Puolivali et al., 2013), and PET (Blood & Zatorre, 2001; Brown et al., 2006; Salimpoor et al., 2011), etc. have been employed. For a detailed review, see (Koelsch, 2014). However, these are not something that we could use in an everyday setting, owing to its sophisticated nature and also the fact that such studies can only be carried out in a laboratory environment where artificially constructed stimuli is employed which do not represent music as it is commonly heard and individuals may not be able to internalize music the same way they do it in natural settings. This limits the ecological validity of such studies. Moreover, in today's world, individuals being endowed with smartphones, high quality portable speakers or headphones, anybody with a reasonable knowhow of how music therapy works, could act as a music therapist, as far as certain non-clinical situations are concerned. They could apply music as a therapeutic intervention on themselves or on anyone around them. Post-intervention, we need an assessment that can appraise the individual's experience and a measure to quantify his depth/extent of internalization to the given music. The assessment should also assess whether the music helped the individual positively or if it triggered any negative thoughts. In order for this measure to have ecological validity, it has to be something that could be assessed in life-like situations. The musical stimulus has to be a non-laboratory like stimulus and the situation should also ideally be, life-like. Employing visual-analogue scale (VAS) or a rating scale would often yield erroneous results owing to that human selfintrospective ability is often not reliable when what is being assessed is an experience so complex and deep such as the musical experience. Also, self-introspective ability varies drastically from person to person. Validated psychometric tools with excellent psychometric properties will have considerably lesser rate of error compared to such measures. Understanding and studying the construct music receptivity, its constituent domains and their interplay, we believe, would contribute towards understanding musical identities and musicality better, and a psychometric instrument, that could be a quick assessment, could be further developed on the basis of this. The Geneva Emotional Music Scale (GEMS) measures perceived and felt emotions to music (Zentner, Grandjean & Scherer, 2008). The GEMS appears to have tremendous application in music therapy. However, it does not measure the extent or depth of internalization to a given piece of music. Given below is a table which lists top studies related to music perception and receptivity.

Author & Year	Summary	Strength	Limitation
1. Mullensiefen et	Describes the	1.A novel construct	It was better to
al., 2014	concept of 'musical	and instrument	field test the
	sophistication' and	developed	instrument in a
	developed a novel	2.Large sample size	sub-sample with
	measurement	3. Investigated	direct testing than
	instrument, the	psychological	the internet study.
	Goldsmiths Musical	correlates and	
	Sophistication Index	socio-demographic	
	(Gold-MSI) to	contexts of musical	
	assess self-reported	sophistication with	
	musical skills and	the aim of	
	behaviors on	elucidating the	
	multiple	conditions that are	
	dimensions in the	associated with	
	general population	individual	
	using a large	differences in	
	Internet sample (n =	musical	
	147,636).	sophistication in	
		general.	
2. Sandstrom &	The Absorption in	1. AIMS shows	The study
Russo, 2011	Music Scale	good internal	employed only
	(AIMS), a 34-item	consistency and	classical music
	measure of	temporal reliability.	stimuli
	individuals' ability	2. AIMS converges	
	and willingness to	with measures of	
	allow music to draw	general absorption,	
	them into an	musical	

Table 1: Studies related to music receptivity

	emotional	involvement and	
	experience.	empathy.	
3. Chin & Rickard,	A self-report	1. This study	The absence of
2012	questionnaire was	provides a reliable	correlation – in
	developed to assess	and valid tool for	both samples –
	both quality and	measuring an	between years of
	quantity of different	individual's level	training with music
	forms of music use,	of active	reception measures
	with eight music	engagement with	such as MES-I, III,
	background items,	music.	IV, V, and the
	and a further 124	2. The MUSE	Index of Music
	items testing music	questionnaire is a	Listening could
	engagement.	novel measure	imply that a high
	Analysis of an	incorporating	level of music
	independent sample	quality and quantity	engagement is
	with a refined 50-	indices of both	independent of the
	item scale ($N = 124$;	music production	traditional notion
	mean age = 22.78	and music	of musicianship.
	years, $SD = 6.17$)	reception.	This possibility
	supported the		needs to be further
	findings, further		evaluated in future
	differentiating		research.
	between "Physical		
	Exercise" and		
	"Dance." Taken		
	together with the		
	eight music		
	background items,		
	the Music USE		
	(MUSE)		
	questionnaire can be		
	used as a 58-item, or		
	in a reduced 32-item		

	format.		
4. Chin et al.,	A multi-modular	1. The MUSEBAQ	There is age bias in
2018	self-report	is a comprehensive,	each of the three
	instrument (the	modular instrument	studies reported.
	Music Use	that can be used in	The age
	and Background	whole, or by	distribution was
	Questionnaire, or	module as required.	positively skewed
	MUSEBAQ) was	2. The entire profile	such that the
	developed to	provides	factors identified in
	measure a diverse	substantially more	these samples may
	set of music	information about	reflect music
	engagement	an individual's	characteristics of
	constructs. The	musical	individuals better
	MUSEBAQ offers	engagement than	for the under 40
	researchers and	has been previously	demographic than
	practitioners a	available,	older
	comprehensive,	and requires an	demographics.
	modular instrument	average of less than	
	that can be used in	10 minutes to	
	whole, or	complete.	
	by module as	3. The individual	
	required to capture	modules can be	
	an individual's level	used in isolation if	
	of	a more targeted	
	engagement with	assessment is	
	music and to serve	required, for	
	as a background	instance of musical	
	questionnaire to	capacity.	
	measure and	4. This study is the	
	interpret the effects	first to identify four	
	of dispositional	robust factors	
	differences in	within this	
	emotional reactions	construct:	

	to music.	emotional	
		sensitivity;	
		listening	
		sophistication;	
		music	
		memory and	
		imagery; and	
		personal	
		commitment to	
		music.	
5. Nagy & Szabo,	The aim of the study	The results are	1. Further studies
2004	were to discover	useful for music	should be done on
	whether the	therapy. It is often	the influence of
	phenomenological	the therapist's	degree of liking for
	change in one's	personal choice	the musical
	experiences induced	which music he	piece.
	by music shows	gives to the patient.	2. More delicate
	differences	The knowledge	analysis should be
	depending on the	about the person's	done on structural
	intensity of musical	intensity of	elements of music,
	involvement and	involvement and	too, in connection
	type of music in a	about the general	with particular
	laboratory setting.	effects of a	experiences, to be
	Intensity of musical	particular musical	able to define
	involvement was	piece help the	general effects of
	measured by the	therapist choose the	certain
	Musical	best type of music	components.
	Involvement	for the person and	
	Scale among 500	predict the probable	
	university students.	effects of	
	High and low	music-listening.	
	involvers were		
	chosen for the		

	laboratory		
	experiments		
	(N=125).		
6. Law & Zentner,	a new test	1. Created a battery	1. A rigorous
2012	battery (Profile of	consisting of nine	examination of the
	Music Perception	sub-tests, tapping	battery required
	Skills; PROMS) was	skills across	repeated and
	developed that	various	lengthy testing
	measures perceptual	sub-domains of	sessions that
	musical skills across	pitch, rhythm, and	limited the number
	multiple domains:	sound quality (e.g.,	of people that
	tonal (melody,	timbre).	could be tested.
	pitch), qualitative	2. In contrast to	2.Questions need
	(timbre, tuning),	most other musical	to be addressed,
	temporal (rhythm,	test batteries, which	Such as the
	rhythm-to-melody,	were designed for	distribution of
	accent, tempo), and	special populations	musical skills in
	dynamic (loudness).	(e.g., children,	the general
		amusics, or adults	population for
		with hearing or	example, whether
		musical	distributions vary
		impairments),	according to
		the PROMS is a	parameters such as
		test for the normal	age, gender,
		adult population.	and socioeconomic
		3. This battery is	status, or to the
		having multi-	presence of strong
		dimensionality	musical
		including aspects of	institutions.
		music perception	
		such as timbre,	
		tempo, tuning or	
		accent.	

Music has its value majorly as a consumable of man. Music is created so that we could enjoy and appreciate it. The potential of music as therapy is huge and researchers are trying to find optimal and effective ways to tap this potential in therapy settings. Music and its applications have been burgeoning in recent years. Among complementary and alternative medicine (CAM) modalities, music therapy is one of the least standardized ones. Standardizing music for therapy purposes is quite challenging as music therapy is most effective when it is tailor-made to conform to the musical identity of an individual. We need assessments that could assess an individual's musical identity as accurate as possible. When applied in an individual specific manner, music therapy is quite effective and has documented outcomes (Bunt & Hoskyns, 2013; Sihvonen et al., 2017; Thaut & Hoemberg, 2014). The USA has a certifying body for music therapists known as the American Music Therapists Association and the certification is termed Board Certified Music Therapist (MT-BC). In India we do not have such certifying body or a certification. It is high time that we have a certifying body for music therapists. This step would be an integral process towards standardizing music as medicine. Music has been extensively used in psychotherapy (Metzner, 2004; Grocke et al., 2008; Lin et al., 2011), education (Larsson and Georgii-Hemming, 2019), sports (Belkhir et al., 2019), and so on. Understanding how music influences the human mind and how it induces and modulates mood states has been always a key question that researchers are trying to address. When an individual listens to a piece of music, musical identity is a major player which mediates music receptivity. The more the music conforms to the musical identity, more are the chances of mood modulation to happen (Bleyle, 1992) and more are the chances of music receptivity to be high. Existing research has focused on using music in therapy, finding neural correlates of music, music perception, etc. (Carterette & Kendall, 1999; Deutsch, 2007; Justus & Bharucha, 1996; Koelsch & Siebel, 2005; Lynch et al., 1990). Subjective human experiences to music are an area where there are mixed research evidences, owing to its complex nature. Therefore, understanding individual differences in music listening is of colossal significance. Investigating how individuals experience music can give a profound insight on how music influences the human mind. Lack of appropriate tool limits research in an area, and we found that there is a need for a tool that can assess the extent or depth of internalization of music. Further we developed the construct music

receptivity and developed and validated a psychometric assessment (Music Receptivity Scale) to measure music receptivity.

3.2 Receptivity in psychological and biological processes

Search for traits that uniquely identify a person's inclination towards music has been a curious quest (Schäfer, 2016). Miranda (2020) identified that neuroticism is associated with musical habits like extent of music listening, musical sensibility (emotional reactions), music preferences (music genres), and functions of music (emotion regulation). Miranda et al. (2010) likewise found that in high school students, extraversion and openness alone are related to music preference and not the other dimensions of the big five personality factors. A meta-analysis reported a small to medium correlation between neuroticism and emotion regulation through music listening (Miranda and Blais-Rochette, 2018). Similarly, some genetic studies have identified genetic markers related to musical abilities. Genes like MAPK10, SNCA, ARHGAP24, TET2, UBE2D3, FAM13A and NUDT9 are associated with music abilities (Oikkonen et al., 2016). Another study of genome wide analysis of 76 pedigrees comprising 767 people, showed genetic linkage related to discrimination of pitch, duration, and sound patterns, which are essential for music perception. The key genetic component, PCDH7, is associated with cochlear-amygdala areas (Oikkonen et al., 2015). Similarly, the AVPR1A gene is related to music perception, music memory, and music listening (Tan et al., 2014). Järvelä (2018) showed that alphasynuclein gene and GATA-binding protein 2 gene are related to musical aptitude, and suggested that these genes are also involved in the dopaminergic circuits that regulate reward mechanism, and hence got evolutionary linkages. Even though these studies successfully hint towards deep rooted psychological and genetic traits associated with musical abilities, we need a construct that shows how these traits dynamically interact and result in different musical experiences such as elation, thrills, chills, feelingmoved, and awestruck. The construct music receptivity might justify this requirement.

3.3 Need for a new construct – Music Receptivity

Music Perception restricts to basic perceptual aspects of music, like pitch, rhythm, tempo etc., and predominantly, the cognitive processes associated with it. These physical attributes are well studied and elucidated to show how they invoke a higher

order experience (Justus and Bharucha, 2002; Deutsch, 2007). Levitin et al. (2018) have discussed temporal factors in music as a preliminary step in understanding how and why music literally moves us. However, in order for music to have a transformational influence and reconfigure psychological states, it must be accompanied by higher order cognitive and emotional processing, which may lead to one experiencing higher-order mind-body experiences. For music therapy to be effective, this higher dimension of processing has to occur in the individual. The emphasis in this study is towards internal psychological processes. Unlike music perception, where different physical features can have identifiable thresholds and ranges, we propose music receptivity to follow a psychological continuum varying from a lower degree to a higher degree of receptivity. This differential receptivity would have a direct implication in standardizing music for therapy in various clinical conditions. Towards this end, an individual-centric approach to music therapy is key, as music listening is a highly subjective phenomenon. Therefore, it is important to know how and to what extent a piece of music affected an individual while he listened to it. This motivated us to think of the construct - Music Receptivity.

3.4 Other tools that attempt to assess related constructs

Music self-concept Inventory (MSCI) was developed to evaluate change or development in music self-concept, and it has three subscales, support or recognition from others, personal interest or desire, and self-perception of music ability (Hash, 2017). Interpersonal music-communication competence scale was developed to measure a set of abilities that can help develop the interpersonal communication through music training (Hald et al., 2017). Music perception ability questionnaire was developed to assess the general perception ability of non-musicians and enable them to assess their music abilities. The Music USE (MUSE) questionnaire was developed to assess the engagement styles of eight different background music, and provide an overall qualitative and quantitative measure of music use. This questionnaire had shown four distinct engagement styles, cognitive and emotion regulation, engaged production, social connection, dance and physical exercise (Chin and Rickard, 2012). Motivation for Learning Music (MLM) questionnaire, based on the Self-Determination Theory (Deci and Ryan, 1985) was developed to assess the degree of inherent motivation of music students to learn music (Comeau et al., 2019). Adaptive Functions of Music Listening Scale was another novel perspective to assess various music listening functions related to general wellbeing. This questionnaire has 11 domains like stress regulation, anxiety regulation, anger regulation, loneliness regulation, rumination, reminiscence, strong emotional experiences, awe and appreciation, cognitive regulation, identity, and sleep. Their study showed higher functions of music listening in females (Groarke and Hogan, 2018). To evaluate the influence of home ambiance of music exposure and engagement in infants and preschool children, Music@Home questionnaire was developed, and this study also revealed distinct patterns of parents' music characteristics (Politimou et al., 2018). Based on the music model of motivation (Jones, 2009), Music Model of Academic Inventory was developed in a music education setting. This tool had five domains, namely empowerment, usefulness, success, interest, and caring (Jones and Skaggs, 2016). A modular tool for music research to assess musicianship, musical capacity, music preferences, and motivations for music use was developed (Chin et al., 2018). Barcelona Music Reward Questionnaire (BMRQ) was developed to assess the variations in how listeners experience reward in any music related activities (Mas-Herrero et al., 2013). Goldsmiths Musical Sophistication Index (Gold-MSI) measures inherent characteristics like musical skill, expertise, achievements, and other such related behaviours related to a variety of musical contexts. This tool gives an estimate of mastery of a person in a particular area of music and can reflect musical talent, ability, aptitude or musical potential (Müllensiefen et al., 2014). Apart from these wide varieties of tools based on various psychological constructs, some tools were also developed to assess perceptual deficits in music and hearing like the Adaptive Music Perception (AMP) test, which assesses the threshold of discrimination for various features of music like meter, harmony, melody, and timbre (Kirchberger and Russo, 2015); and Music Perception battery based on M-factors that has 80 items to measure various domains like contour, timbre, meter, pitch, scale, duration, and loudness, and they help in understanding any psychological or biological linkages with speech and language deficits (Barros et al., 2017).